1. Introduction

Electronic word-of-mouth has been quite popular in recent years, and travellers are increasingly depending on digital feedback by observing reviews posted on travel portals. In the lodging sector, online customer reviews (OCRs) are considered as a critical source of information that has a direct impact on travellers’ decision-making (Baka, 2016; Hu, Zhang, Gao, & Bose, 2019; Mariani, Borghi & Gretzel, 2019; Mellinas, Nicolau and Park, 2019). Online reviews summarize guests’ hotel stays and demonstrate their attitudes toward the hotel and their stay experiences (Xu & Li, 2016). Due to high competition in the lodging industry, hotels must focus on customer satisfaction as a crucial asset to create loyalty and to promote a positive attitude (Cetin and Dincer, 2014). The first step for hoteliers is to identify the important topics in OCRs that lead to customer satisfaction and dissatisfaction (Xu & Li, 2016, Sparks and Browning, 2011). Due to the nature of the hospitality industry, sentiment analysis and topic modeling approaches are growing rapidly as a novel research technique to analyze consumers’ in-depth opinions, as online feedback and comments from customers have a significant effect on their purchasing behaviour (Ban and Kim, 2019). Despite a review text can contain much more information than a review rating, topics in review text have not attracted as much research attention as volume, and valence.

In this research, topic modelling was employed to extract hidden topics in consumer reviews. Topic modelling is defined as being a machine learning tool for discovering hidden topics appearing in a large collection of documents (Blei, Ng, & Jordan, 2003). Since the determinants of consumer satisfaction ratings differ with the hotel type (Xu & Li, 2016), luxury hotel reviews from the same chain will be investigated in this research. This research addresses two main questions: (1) What are the important topics that luxury hotel guests articulate through their online reviews? (2) How do these topics, together with other review characteristics such as emotions embedded in a review text, influence satisfaction ratings?

2. Literature Review

2.1. Determinants of customer satisfaction

Understanding the determinants that influence hotel guest satisfaction has long been a popular area of research. Cleanliness, location (in terms of close to attraction and accessibility with public transportation), room (such as size), service and value (such as room price) are listed as essential
attributes to reduce dissatisfaction for luxury hotels (e.g. 4-5 stars hotels) (Li et al. 2020; Zhou et al. 2014). Content analysis or surveys were preferred ways to listen OCRs in literature.

Li et al. (2013), for example, used text mining and content analysis to analyse hotel reviews. Accommodation, transportation accessibility, proximity to tourist attractions, and value for money were listed as customer satisfaction factors (Alrawadieh et al. 2018). The determinants of customer satisfaction and dissatisfaction changed depending on the type of hotel (Kim et al. 2015). Gu and Ryan (2008) determined seven factors that positively affect consumers’ overall satisfaction: Bed comfort, bathroom cleanliness, room size and condition, location and accessibility, food and beverage quality, auxiliary service, and staff performance.

The content analysis of dissatisfied online reviews for luxury hotels in Jordan categorized these themes: service quality, the efficiency of hotel facilities, cleanliness and hygiene, quality of food and beverage, noisiness and crowdedness, high pricing, hotel’s physical characters (décor, location, etc.), policies applied by the hotel, overbilling and refunding related issues, lack of sufficient safety measures, and misleading information (Dincer & Alrawadieh, 2017).

As a review-specific factor, the role of emotions embedded in reviews on consumers’ satisfaction ratings has not been investigated sufficiently. In leisure services, such as amusement parks, theatres, resort hotels, consumers consume service to stimulate emotions (Otto & Ritchie, 1996). The degree of arousal or excitement experienced by customers when consuming a service may be a major determinant of pleasure and satisfaction yielded through the experience (Russell & Pratt, 1980; Mano & Oliver, 1993). Thus, joy in a review text, as a positive and high arousal emotion, might have a positive impact on satisfaction ratings, while anger, as a negative and high arousal one, might have a negative impact.

2.2. Topic modeling and sentiment analysis

Text data analysis can be classified into two categories based on what people read in the text: topic modeling and sentiment analysis. The term “topic modeling analysis” refers to a set of techniques for determining what the text is about, whereas “sentiment analysis” refers to a set of techniques for determining the emotions or sentiments that present in the text (Blei al. 2003). Sentiment analysis has been quite important in recent years in the service environment. Customer sentiment in most situations relates to the feelings conveyed in text reviews by customer (Geetha et al., 2017). While emotions are related to distinct human experiences such as trust, sadness, anger, fear and surprise, the sentiments are related to the polarity (positive, neutral, negative) and intensity (Kirilenko et al., 2018).

The application of topic modelling on hotel reviews has been investigated scarcely. Latent Dirichlet allocation (LDA) was initially created by Blei et al. (2003) with the purpose of discovering latent semantic structures in a textual document collection. The fundamental notion is that each paper has a mix of latent subjects, in which each subject differs from document to document, defined by distribution across the word (single words in document collection).

Guo, Barnes, and Jia (2017) identified 19 topics that consumers frequently mentioned in hotel reviews using LDA and examined the effects on satisfaction ratings. While homeliness, strong event management capability, and pet-friendliness were topics that appear in 5-star hotels, the quality from perspectives of hotel and resort facilities, food quality, room size, and decoration were the topics in 4 and 4.5-star hotels. In sharing economy context, Zhang (2019) conducted topic modelling to extract 16 topics in Airbnb reviews and investigated the influence on property’s listing performance. Although online review ratings have been already proven to influence sales significantly (e.g., Godes & Mayzlin, 2004), the predictive power of topics extracted from luxury hotel reviews on customer satisfaction have not been investigated in depth. This study contributes to literature applying LDA to extract topics in reviews and examines the influence on satisfaction ratings for luxury hotels.
Method:

This empirical research is descriptive and relies on 8376 TripAdvisor hotel reviews of three Spanish luxury hotels from the same chain between 2002-2019. The star ratings of the selected hotels range from four to five stars, indicating that the sample represents a homogeneous group of hotels in terms of service ratings. These hotels are similar in terms of being in the same area, having comparable room rates, to have at least 1000 reviews. Three hotel reviews were extracted which are situated in Canary Islands, one of the most visited regions of Spain: Lopesan Costa Meloneras Resort, Lopesan Baobab Resort, and Lopesan Villa del Conde Hotel Resort. Lopesan is the leading Canarian tourist company in the Islands and one of the top ten in Spain.

The data collected has been analysed using the open-source software Python. We have utilized statistical text processing techniques to assess the chance that topics are latent throughout the whole document using structurally modified materials for a topic modeling. In this paper, we utilized the latent Dirichlet allocation (LDA) approach, the most recognized modeling method. Emotional analysis was utilized in the text to generate good and negative terms in consumers' emotional words. The techniques used in topic modeling are divided into three stages. First, we collect the data that will be used for topic modeling. During the second stage, pre-processing analysis were conducted to convert unstructured data into data suitable for topic modeling. Data analytics were the last stage.

The first step is to remove stopwords in the preparation of the data. The algorithm extracts the words of the document (this step is called tokenization), cleans the data to remove the irrelevant words (i.e. “a”, “is”, etc...) and reduces inflectional form and derivationally related forms of a word to a common base form (stemming and lemmatization). As a last descriptive analysis, we have employed a Bag of Word (BoW) model. In this approach, we look at the histogram of the words within the text, considering each word count as a feature [see Zhang, Jin & Zhou (2010) and Wu, Hoi, Yu (2010) for further information].

Review polarity was measured as sentiment intensity and its value ranges from −1 (extremely negative) to 1 (extremely positive). This is done using VADER (Valence Aware Dictionary and sEntiment Reasoner) lexicon (Gilbert & Hutto, 2014). The NRC Word-Emotion Association Lexicon (Mohammad & Turney, 2010) was used to obtain review length, and classify words into categories of positive, negative, anger, anticipation, disgust, fear, joy, sadness, surprise, and trust. Prior average ratings and variance were measures of social influence from prior reviews. Latent Dirichlet allocation (LDA) was applied to extract and label the dimensions of customer satisfaction across reviews.

Ordinal logistic regression was used to understand the effects of predictors on customer satisfaction ratings. The predictors are review polarity and length, prior average rating and variance in ratings, joy and anger emotions, hotel dummies (Costa Moleneras was the reference one), and topic dummies. Models were run with and without the topics and compared.

Results:

Twenty topics were decided as the best representing review texts of three luxury hotels (Table 1). The decision of the optimal number of topics relies on coherence and perplexity statistics. Each topic was labelled with the extracted the top 10-words and their relative weight. For instance, topic 13 was labelled as pay problems with top-ten words, namely room, pay, hotel, free, charge, safe, extra, drink, price, day, which are ordered according to their weight. The model with topics was significantly better than the model without topics (R2=0.16 vs 0.11).

The results of the ordinal regression model indicated that polarity, joy emotion, prior average rating and variance were significantly positively associated with satisfaction ratings; however, review length and anger emotion were significantly negative associated. Hotel dummies were also significant: Baobab has higher satisfaction than Villa del Conde and Costa Meloneras. The significant negative topics were 13(pay problems) and 18(room services). The most important topics were 11(hotel lovers), 9(staff quality/attitude), 6(returning customers), 5 (convenience of location), and 2(service quality). The least important one was topic 15 (nightlife and hotel entertainment). Among twenty topics,
nonsignificant topics were topics 10 (restaurant quality), 12 (hotel complainers), 19 (problem issues) compared to the reference topic 20 (crowdedness/hotel guest quality). Remaining topics and their labels were 1 (view and romantic surroundings), 3 (hotel size and design), 4 (checking service), 5 (convenience of location), 7 (family with kids), 8 (hotel facilities, especially pool), 14 (satisfied hotel guests), 16 (hotel amenities), and 17 (breakfast and food).

Table 1: Topics with LDA

<table>
<thead>
<tr>
<th>Topic # and label</th>
<th>Words</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: View and romantic surroundings</td>
<td>Room, pool, view, area, restaurant, hotel, sea, main, large, quiet</td>
</tr>
<tr>
<td>2: Service quality</td>
<td>Good, excellent, service, quality, spa, high, facility, standard, restaurant, location</td>
</tr>
<tr>
<td>3: Hotel size and design</td>
<td>Area, large, resort, pool, garden, style, feel, huge, design, comfortable</td>
</tr>
<tr>
<td>4: Checking service</td>
<td>Room, reception, check, day, arrive, leave, book, give, service, wait</td>
</tr>
<tr>
<td>5: Convenience of location</td>
<td>Walk, beach, restaurant, shop, bar, hotel, minute, close, front, plenty</td>
</tr>
<tr>
<td>6: Returning customers</td>
<td>Hotel, visit, stay, year, time, return, holiday, staff, fantastic, back</td>
</tr>
<tr>
<td>7: Family with kids</td>
<td>Child, family, pool, kid, great, couple, adult, love, young, time</td>
</tr>
<tr>
<td>8: Hotel facilities (especially pool)</td>
<td>Good, nice, pool, great, hotel, lot, big, clean, place, food</td>
</tr>
<tr>
<td>9: Staff quality/attitude</td>
<td>Staff, friendly, clean, food, helpful, excellent, choice, ground, plenty, return</td>
</tr>
<tr>
<td>10: Restaurant quality</td>
<td>Restaurant, food, hotel, dinner, evening, good, pool, eat, week, cold</td>
</tr>
<tr>
<td>11: Hotel lovers</td>
<td>Great, amazing, fantastic, staff, lovely, food, beautiful, back, perfect, love</td>
</tr>
<tr>
<td>12: Hotel complainers</td>
<td>People, time, review, bad, issue, point, problem, thing, read, complain</td>
</tr>
<tr>
<td>13: Pay problems</td>
<td>Room, pay, hotel, free, charge, safe, extra, drink, price, day</td>
</tr>
<tr>
<td>14: Satisfied hotel guests</td>
<td>Hotel, stay, lovely, week, night, find, back, time, feel, eat</td>
</tr>
<tr>
<td>15: Nightlife and Hotel entertainment</td>
<td>Entertainment, evening, night, good, bar, show, hotel, German, watch, bit</td>
</tr>
<tr>
<td>16: Hotel amenities</td>
<td>Hotel, pool, bed, find, towel, sunbed, area, day, people, plenty</td>
</tr>
<tr>
<td>17: Breakfast and food facilities</td>
<td>Breakfast, restaurant, night, bar, food, dinner, drink, meat, eat, selection</td>
</tr>
<tr>
<td>18: Room services</td>
<td>Room, day, bed, water, change, double, end, towel, bottle, clean</td>
</tr>
<tr>
<td>19: Problem issues</td>
<td>Room, shower, open, reception, floor, bathroom, bath, light, door, noise</td>
</tr>
<tr>
<td>20: Crowdedness or hotel guest quality</td>
<td>Hotel, guest, make, star, feel, experience, place, staff, stay, number</td>
</tr>
</tbody>
</table>

Conclusions/Future Research/Limitations:
This study contributes to literature about consumer satisfaction in the hospitality sector by using LDA to explore topics embedded in online customer reviews. The extracted topics were related both with the determinants of customer (dis-)satisfaction and different customer segments jointly. The extracted topics
explained satisfaction ratings. Topic extraction is an alternative method to surveys or content analysis to listen customers’ voice. It can help managers to identify service issues that customers talk about and make informed decisions regarding service improvement.

Most of extracted topics were similar to determinants of consumer (dis-)satisfaction identified in literature (Guo, Barnes, & Jia, 2017; Zhang 2019; Dincer & Alrawadieh, 2017). Pay problems (topic 13) and insufficient hotel amenities such as water, towel etc. (topic 18) seem to create dissatisfaction for luxury hotel guests. Compared to previous studies, we did not obtain any cleanliness issue or value for money in our extracted topics. This might be caused by using only luxury hotel reviews. When joy emotion increases, satisfaction ratings increase and anger emotions is the opposite. Consumers are influenced by other ratings (i.e. prior average rating) and variability in their ratings (i.e. distribution of previous ratings) when they give a satisfaction rating, similar to Lee et al. (2015). One of limitation of this study was using three luxury hotels from the same chain. More luxury hotels can be further added to examine the stability of the findings. As a future research, reviewer characteristics can be added to explain satisfaction ratings and to profile the extracted topics in more detail.

References

